Opacity effect on extreme ultraviolet radiation from laser-produced tin plasmas.

نویسندگان

  • Shinsuke Fujioka
  • Hiroaki Nishimura
  • Katsunobu Nishihara
  • Akira Sasaki
  • Atsushi Sunahara
  • Tomoharu Okuno
  • Nobuyoshi Ueda
  • Tsuyoshi Ando
  • Yezheng Tao
  • Yoshinori Shimada
  • Kazuhisa Hashimoto
  • Michiteru Yamaura
  • Keisuke Shigemori
  • Mitsuo Nakai
  • Keiji Nagai
  • Takayoshi Norimatsu
  • Takeshi Nishikawa
  • Noriaki Miyanaga
  • Yasukazu Izawa
  • Kunioki Mima
چکیده

Opacity effects on extreme ultraviolet (EUV) emission from laser-produced tin (Sn) plasma have been experimentally investigated. An absorption spectrum of a uniform Sn plasma generated by thermal x rays has been measured in the EUV range (9-19 nm wavelength) for the first time. Experimental results indicate that control of the optical depth of the laser-produced Sn plasma is essential for obtaining high conversion to 13.5 nm-wavelength EUV radiation; 1.8% of the conversion efficiency was attained with the use of 2.2 ns laser pulses.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Optimization of Extreme Ultraviolet Emission from Laser-Produced Tin Plasmas Based on Radiation Hydrodynamics Simulations

We investigated the plasma conditions for obtaining highly efficient extreme ultraviolet light from laserproduced tin plasmas for lithography of next generation semiconductors. Based on accurate atomic data tables calculated using the detailed configuration accounting code, we conducted 1-D radiation hydrodynamic simulations to calculate the dynamics of tin plasma and its emission of extreme ul...

متن کامل

Evolution analysis of EUV radiation from laser-produced tin plasmas based on a radiation hydrodynamics model

One of fundamental aims of extreme ultraviolet (EUV) lithography is to maximize brightness or conversion efficiency of laser energy to radiation at specific wavelengths from laser produced plasmas (LPPs) of specific elements for matching to available multilayer optical systems. Tin LPPs have been chosen for operation at a wavelength of 13.5 nm. For an investigation of EUV radiation of laser-pro...

متن کامل

Effect of focal spot size on in-band 13.5 nm extreme ultraviolet emission from laser-produced Sn plasma.

The effect of focal spot size on in-band 13.5 nm extreme ultraviolet (EUV) emission from laser-produced Sn plasmas was investigated for an EUV lithography light source. Almost constant in-band conversion efficiency from laser to 13.5 nm EUV light was noted with focal spot sizes from 60 to 500 microm. This effect may be explained by the opacity of Sn plasmas. Optical interferometry showed that t...

متن کامل

Influence of laser pulse duration on extreme ultraviolet and ion emission features from tin plasmas

We investigated the role of laser pulse duration and intensity on extreme ultraviolet (EUV) generation and ion emission from a laser produced Sn plasma. For producing plasmas, planar slabs of pure Sn were irradiated with 1064 nm Nd:YAG laser pulses with varying pulse duration (5–20 ns) and intensity. Experimental results performed at CMUXE indicate that the conversion efficiency (CE) of the EUV...

متن کامل

Enhancements of extreme ultraviolet emission using prepulsed Sn laser-produced plasmas for advanced lithography applications

Laser-produced plasmas (LPP) from Sn targets are seriously considered to be the light source for extreme ultraviolet (EUV) next generation lithography, and optimization of such a source will lead to improved efficiency and reduced cost of ownership of the entire lithography system. We investigated the role of reheating a prepulsed plasma and its effect on EUV conversion efficiency (CE). A 6 ns,...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Physical review letters

دوره 95 23  شماره 

صفحات  -

تاریخ انتشار 2005